Dynamics from Buried Polymer-Polymer Interfaces in Thin Films

JYOTSANA LAL, XUESONG HU, Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL-60439, USA., ZHANG JIANG, SUNIL K. SINHA, Department of Physics, University of California, San Diego, La Jolla, CA-92039, USA., SURESH NARAYANAN, ALEC R. SANDY, Advanced Photon Source, Argonne National Laboratory, Argonne, IL-60439, USA., XUESONG JIAO, LAURENCE B. LURIO, Department of Physics, Northern Illinois University, DeKalb, IL-60115, USA. — We report a further development of X-ray photon correlation spectroscopy (XPCS) in order to probe capillary wave dynamics at a buried polymer interface of a bilayer. The bi-layer was chosen so that the critical angle for total external reflection for the top layer is smaller than that for the bottom layer. When x-rays are incident below the critical angle of the top layer only the structure and dynamics of the top layer are probed. When x-rays are incident above the critical angle of the top layer but below that of the bottom layer, a standing wave is set up. The phase of this standing wave can be adjusted to have a maxima at the polymer-polymer interface and simultaneously a node at the polymer-air interface. Consequently, one can isolate the static scattering and XPCS from the buried layer. Results on a system consisting of a 100 nm polystyrene (PS) film on top of an 100 nm polybromostyrene (PBrS) film, supported on a Si substrate will be reported. The dynamics are consistent with a low-viscosity mixed layer between the PS and PBrS.

Jyotsana Lal
Intense Pulsed Neutron Source, Argonne National Laboratory,
Argonne, IL-60439, USA.

Date submitted: 25 Sep 2006

Electronic form version 1.4