Collapse and Aggregation of Polymers in Solvents with Varing Molecular Sizes below θ-Temperatures

GI XUE, FANGFANG TAO, XIAOLIANG WANG, DONGSHAN ZHOU, Department of Polymer Science and Engineering, Nanjing University — The collapse and interpenetration of polymer in various solvents were monitored by fluorescence below θ-temperatures. Polystyrene was labeled with a donor and an acceptor groups respectively. Dilute and semidilute solutions in cyclohexane and DOP (dioctylphthalate) containing a mixture of the two polymers were monitored by nonradiative energy transfer. We found that PS collapsed to dis-entangled globules in DOP, while it collapsed and aggregated to interpenetrated particles in cyclohexane as the solutions were cooled from their θ-temperatures. This can be attributed to the effect of viscoelasticity; namely, the diffusion coefficient of chain segments is very small in solvent with larger molar size due to the high viscosity, each chain becomes a tiny glassy ball before collision and association with other chains. The dis-entanglement of the glassy polymer was confirmed by a recently developed 1H solid state NMR.

This work is supported by the National Nature Science Foundation of China (NNSFC, Nos. 50533020, 20504014, 90403013, 20374027)

Gi Xue
Department of Polymer Science and Engineering, Nanjing University

Date submitted: 18 Oct 2006