Thermal Fluctuations of Vortex Matter in Trapped Bose-Einstein Condensates
STEINAR KRAGSET, Norwegian University of Science and Technology, EGOR BABAEV, Royal Institute of Technology, Sweden, ASLE SUDBO
Norwegian University of Science and Technology — We perform Monte Carlo studies of vortices in three dimensions in a cylindrical confinement, with uniform and nonuniform density. The former is relevant to rotating 4He, the latter is relevant to a rotating trapped Bose–Einstein condensate. In the former case we find dominant angular thermal vortex fluctuations close to the cylinder wall. For the latter case, a novel effect is that at low temperatures the vortex solid close to the center of the trap crosses directly over to a tension-less vortex tangle near the edge of the trap. At higher temperatures an intermediate tensionful vortex liquid located between the vortex solid and the vortex tangle, may exist.

1Work supported by NSF and Research Council of Norway

Asle Sudbo
Norwegian University of Science and Technology

Date submitted: 30 Oct 2006