Thermal Fluctuations of Vortex Matter in Trapped Bose-Einstein Condensates

STEINAR KRAGSET, Norwegian University of Science and Technology; EGOR BABAЕV, Royal Institute of Technology, Sweden, ASLE SUDBO¹, Norwegian University of Science and Technology — We perform Monte Carlo studies of vortices in three dimensions in a cylindrical confinement, with uniform and nonuniform density. The former is relevant to rotating 4He, the latter is relevant to a rotating trapped Bose–Einstein condensate. In the former case we find dominant angular thermal vortex fluctuations close to the cylinder wall. For the latter case, a novel effect is that at low temperatures the vortex solid close to the center of the trap crosses directly over to a tension-less vortex tangle near the edge of the trap. At higher temperatures an intermediate tensionful vortex liquid located between the vortex solid and the vortex tangle, may exist.

¹Work supported by NSF and Research Council of Norway

Asle Sudbo
Norwegian University of Science and Technology

Date submitted: 30 Oct 2006