Evidence for two energy scales in the superconducting state of optimally doped (Bi,Pb)$_2$(Sr,La)$_2$CuO$_{6+\delta}$

TAKESHI KONDO, TSUNEHIRO TAKEUCHI, SYUNSuke TSUDA, SHIK SHIN, ADAM KAMINSKI, Ames Lab. and Dept. of Physics and Astronomy, Iowa State University — We use angle-resolved photoemission spectroscopy (ARPES) to investigate the properties of energy gap(s) in the optimally doped (Bi,Pb)$_2$(Sr,La)$_2$CuO$_{6+\delta}$ (Bi2201). We find significant differences in the momentum- and temperature- dependence of the pseudogap and superconducting gap suggesting that these gaps have two separate energy scales.

The ARPES spectra slightly off the node have a sharp peak with a small gap below T_c, which closes at T_c. Around the antinode, the broad spectra with a large energy gap of $\sim 40\text{meV}$ are observed above and below T_c. The spectral shape and the gap size around the antinode are almost unchanged across T_c, indicating that the pseudogap state coexists with superconducting state below T_c, and it dominates the character of ARPES spectra around antinode. We speculate that the pseudogap state competes with superconductivity by diminishing spectral weight in the superconducting antinode.

Takeshi Kondo
Ames Lab. and Dept. of Physics and Astronomy, Iowa State University

Date submitted: 31 Oct 2006
Electronic form version 1.4