Memory interference in stage-2 CoCl$_2$ graphite intercalation

MASATSUGU SUZUKI, ITSUKO SUZUKI, SUNY-Binghamton, MOTOHIRO MATSUURA, Fukui University of Technology, Japan — Memory interference effects of aging behavior in stage-2 CoCl$_2$ GIC ($T_{cu} = 8.9$ K and $T_{cl} = 6.9$ K)1,2 have been studied by low frequency ($f = 0.1$ Hz) AC magnetic susceptibility and genuine thermoremanent magnetization experiments. When the system is aged at multiple stop temperatures (T_s) for wait times (typically $t_w = 3.0 \times 10^4$ sec) during a zero-field cooling (ZFC) protocol, the AC magnetic susceptibility exhibits multiple aging holes (dips) at the stop temperatures ($T_s < T_{cu}$) on reheating. The depth of the aging hole at $T_s = 6.0$ K is logarithmically proportional to the wait time. The depth of the aging hole (for the same t_w) exhibits a local maximum at 6.5 K just below T_{cl}. It drastically decreases with increasing temperature and reduces to zero above T_{cu}. The genuine thermoremanent magnetization (TRM) measurement also indicates that the memory of the specific spin configurations imprinted at multiple stop temperatures between T_{cl} and T_{cu} for a wait time during the field-cooled (FC) protocol can be retrieved on reheating.

Masatsugu Suzuki
SUNY-Binghamton

Date submitted: 01 Nov 2006