MAR07-2006-000214

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

Superconductivity and Unusual Lattice Dynamics in the β -Pyrochlore Oxides

ZENJI HIROI, ISSP, University of Tokyo

Recently two families of pyrochlore oxide superconductors were found: one is α -pyrochlore oxide Cd₂Re₂O₇ with $T_c = 1.0 \text{ K}^1$ and the other is β -pyrochlore oxides AOs₂O₆, where A = Cs, Rb and K, with $T_c = 3.3 \text{ K}$, 6.3 K and 9.6 K, respectively.² The superconductivity of the former compound is of weak-coupling BCS type, while, in the latter compouds, the superconductivity changes from conventional weak-coupling to extremely strong-coupling from Cs to K. In particular, KOs₂O₆ with the highest T_c exhibits various unconventional features, which may be ascribed to anomalous electron-phonon couplings arising from the heavy rattling of the K ions.³ Possibly related to this, a first-order phase transition at $T_p = 7.6 \text{ K}$ below T_c has been found only for KOs₂O₆. I will discuss on what is the rattling and how it affects the surrounding conduction electrons in the β -pyrochlores.

¹M. Hanawa *et al.*, Phys. Rev. Lett. **87**, 187001 (2001).

²S. Yonezawa, Y. Muraoka, Y. Matsushita, and Z. Hiroi, J. Phys.: Condens. Matter **16**, L9 (2004).

³Z. Hiroi, S. Yonezawa, Y. Nagao, and J. Yamaura, submitted to PRB.