MAR07-2006-000215

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

Intrinsic vs. extrinsic mechanisms of anomalous Hall effect SHIGEKI ONODA, CREST, Department of Applied Physics, University of Tokyo

Anomalous Hall effect (AHE) in ferromagnets has been a fundamental and intriguing issue in condensed-matter physics. Various mechanisms have been proposed, including the Karplus-Luttinger's band intrinsic mechanism, and extrinsic skew-scattering and side-jump mechanisms. However, the controversy on the mechanism has not been resolved yet. In this talk, a unified theory of the anomalous Hall effect (AHE) is presented for multi-band ferromagnetic metallic systems with dilute impurities [1], using the gauge-covariant formalism for the Keldysh Green's function [2]. In the clean limit, the AHE is mostly due to the extrinsic skew- scattering, and is sensitive to details of impurity potential. When the Fermi level is located around anti-crossing of band dispersions split by spin-orbit interaction, the intrinsic AHE to be calculated ab initio is resonantly enhanced by its non- perturbative nature. Then, an extrinsic-to-intrinsic crossover occurs when the relaxation rate is comparable to the spin-orbit interaction energy. Futher increasing the relaxation rate, a new scaling relation $\sigma_{xy} \propto \sigma_{xx}^{1.6}$ appears in the hopping-conduction regime. Various experimental data on transition-metals and oxcides are understood in terms of this theory [3].

[1] S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. Lett. 97, 126602 (2006).

[2] S. Onoda, N. Sugimoto, and N. Nagaosa, Prog. Theor. Phys. 116, 61 (2006).

[3] T. Miyasato *et al.*, cond-mat/0610324.