Spin Redistribution by Entanglement in an Organic Magnet1 ANDREY ZHELUDEV, OVIDUE GARLEA, Oak Ridge National Laboratory, SADOFUMI NISHIHARA, YUKO HOSOKOSHI, Osaka Prefecture University, Japan, ARSEN GUKASOV, ALAIN COUSSON, LLB CEA/CNRS, Saclay, France, KATSUYA INOUE, Hiroshima University — Polarized neutron measurements of the spin density distribution in the organic S=1/2-tetramer system 2-[2',6'-difluoro-4'-\((N\text{-}\text{tert}-\text{butyl}-N\text{-}\text{oxyamino})\text{phenyl})\]-4,4,5,5'-tetramethyl-4,5-dihydro-1\text{H}-imidazol-1-oxyl reveal a redistribution of spin populations within the magnetic molecular unit. The effect is driven by an exceptionally strong quantum entanglement of four spin wavefunctions. Experimental data are in quantitative agreement with quantum theoretical calculations and provide insight on the actual microscopic origin of the relevant entangling interactions.

1 Work at ORNL was funded by the United States Department of Energy, Office of Basic Energy Sciences- Materials Science, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

Andrey Zheludev
Oak Ridge National laboratory

Date submitted: 06 Nov 2006

Electronic form version 1.4