Abstract Submitted for the MAR07 Meeting of The American Physical Society

Specific heat of tri-glycine sulfate in electric field JASON LASH-LEY, N. HUR, MIKE HUNDLEY, W. HULTS, JASON COOLEY, BOGDAN MIHAILA, JAMES SMITH, Los Alamos National Laboratory, TREVOR FIN-LAYSON, Monash University, CYRIL OPEIL, Boston College, ROBERT FISHER, Lawrence Berkeley National Laboratory — Measurements of the specific heat, polarization and dielectric constant are reported in electric fields up to 3 kV/cm in order to investigate domain energetics in the hydrogen-bonded ferroelectric tri-glycine sulfate. Although the shape of the specific-heat anomaly at $T_C = 322.5 K$ is thermally broadened in unpoled crystals, this shape changes into the characteristic λ -shape expected for a continuous transition with the application of a 220 V/cm electric field. The λ transition below T_C depends on $T - T_C$ in a range $T - T_c \leq 10 K$ with a critical exponent, $\beta = -0.39$. Similarly we find that below T_C the experimental dielectric constant obeys an inverse-power law of the form, $\varepsilon(T) = a/(T - T_C)^{\beta}$, with the constant a = 1244 K and the exponent $\beta = 0.4$.

> Jason Lashley Los Alamos National Laboratory

Date submitted: 06 Nov 2006

Electronic form version 1.4