Abstract Submitted for the MAR07 Meeting of The American Physical Society

Power Law Behavior of Dynamics in Simple Glass Formers¹ JOHN MCCOY, JULIEANNE HEFFERNAN, New Mexico Tech, JOANNE BUDZIEN, DOUGLAS ADOLF, Sandia National Laboratories — Simulation results for the diffusive behavior of polymer chain/ penetrant systems are analyzed. Both freely jointed and freely rotating chains are studied. In all cases, the characteristic times, τ , extracted from the diffusion constants are found to be single valued functions of the packing fraction, η . The functions $\tau(\eta)$ are found to be power-laws with exponents that are sensitive to both chain stiffness and particle type. For a specific system type, all measures of motion extrapolate to zero (or infinity) at a single η_0 . In addition, ($\eta_0 - \eta$) can be interpreted as a "scalar metric" of the "distance" to the glass "transition."

¹Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

John McCoy New Mexico Tech

Date submitted: 09 Nov 2006

Electronic form version 1.4