Abstract Submitted for the MAR07 Meeting of The American Physical Society

 Γ -phonons in $ZnSe(C_2H_8N_2)_{1/2}$ and $ZnTe(C_2H_8N_2)_{1/2}$ hybrid materials IVAN NAUMOV, HUAXIANG FU, Department of Physics, University of Arkansas — Artificially synthesized organic/inorganic hybrid materials with semiconductor component are of growing interest due to potential applications in flexible microelectronics. Among them, hybrid $\text{ZnSe}(\text{C}_2\text{H}_8\text{N}_2)_{1/2}$ and $\text{ZnTe}(\text{C}_2\text{H}_8\text{N}_2)_{1/2}$ are two examples capable of tuning electronic and optical properties on a wide range. Engineering of these materials is difficult without deeper understanding of their fundamental physical characteristics, including electronic band structure and phonon spectra. Recent experimental investigations [1] performed on β -ZnTe(C₂H₈N₂)_{1/2} samples and showed multiple sharp phonon modes in frequencies very different from the $LO(\Gamma)$ phonon of the binary semiconductor ZnTe. Motivated by these results, we have performed density-functional calculations of the Γ phonon modes for both α and β -phases of ZnSe(C₂H₈N₂)_{1/2} and ZnTe(C₂H₈N₂)_{1/2}. We found, in particular, that light hydrogen atoms not only define the high frequency motion (1500-3000 cm^{-1}), but also dominate in some low frequency modes in the region of 100–150 $\rm cm^{-1}$ where they move mostly perpendicular to the superlattice stacking direction. Based on symmetry of the materials, the Raman modes at the Γ point are identified. [1] X. Huang, J. Li, Y. Zhang, and A. Mascarenhas, J. Am. Chem. Soc. 125, 7049 (2003).

> Ivan Naumov Department of Physics, University of Arkansas

Date submitted: 13 Nov 2006

Electronic form version 1.4