Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Low-temperature specific heat and thermal Hall conductivity
in a vortex state of d-wave superconductors
ASHOT MELIKYAN, Materials Science Division, Argonne National Laboratory,
OSKAR VAFEK, Florida State University and National High Magnetic Field Laboratory — We analyze
the mixed state of d-wave lattice superconductors focusing on the quasiparticle
contribution to the specific heat and the thermal Hall conductivity at intermediate magnetic fields
$H_{c1} \ll H \ll H_{c2}$. In the ultra-low temperature regime
$T \ll T_0 \approx \frac{v_D^2}{(v_Fl)^2} = (T/v_Fl)\Phi[v_F/(Tl), v_F/v_D, k_Fl]$. In this regime the specific heat exhibits
oscillatory behavior as a 2π-periodic function of k_Fl: in general it has an activated
form $C \propto \exp(-\Delta_m/T)$ except for a discrete set of k_Fl where $\Delta_m = 0$ and $C \propto T^2$.
At temperatures $T_0 \ll T \ll \Delta$, the k_Fl-oscillations become unobservable due to thermal broadening and the Simon-Lee scaling is recovered. The results of the analysis
of the thermal Hall conductivity are similar: in particular, at the lowest temperatures, κ_{xy} is an oscillating 2π-periodic function of k_Fl. We calculate the scaling
functions numerically and compare our results with the existing experimental data
on the specific heat and thermal Hall conductivity.

Ashot Melikyan
Materials Science Division, Argonne National Laboratory

Date submitted: 11 Nov 2006