Local crystal structure of iron oxide nanoparticles synthesized from Ferritin

MICHAEL KRISPIN, MARCUS PREISINGER, PETER PFALZER, SIEGFRIED HORN, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany, DANIEL STRONGIN, Temple University — We have investigated the size dependence of the local crystal structure of nanosized iron oxide by extended x-ray absorption fine structure (EXAFS) at the iron K-edge. Hematite (α-Fe_2O_3) nanoparticles of different diameters were produced by thermal treatment of horse spleen ferritin molecules and remineralized apo-ferritin molecules, respectively. The structure of these particles was compared to α-Fe_2O_3 and γ-Fe_2O_3 nanopowder references. The Fourier transformed EXAFS spectra of the nanoparticles differ significantly from hematite and maghemite reference spectra and change systematically as a function of particle diameter, signalling a corresponding evolution of the structure. We show that the Fe–O bond length decreases with decreasing diameter of the particles and with decreasing particle density. This is explained by a core-shell model, in which the fraction of a γ-Fe_2O_3 like particle shell increases while the hematite core decreases with decreasing particle size.

Michael Krispin

Date submitted: 13 Nov 2006

Electronic form version 1.4