Abstract for an Invited Paper
for the MAR07 Meeting of
The American Physical Society

Theoretical and Modeling of Light Interactions with Metallic Nanostructures

STEPHEN GRAY, Argonne National Laboratory

Metallic nanostructures such as systems containing metal nanoparticles or metal films with nanoscale diameter holes or other nanostructured features are intriguing systems. Surface plasmons, special electronic excitations near the metallic surfaces, can then be excited with visible light. In addition to interest in their fundamental behavior and interactions, surface plasmons are useful in a variety of practical areas, including chemical and biological sensing and optoelectronics. Surface plasmons can be intense and localized, and correctly describing their behavior in complex systems can require numerically rigorous modeling techniques. This talk presents a discussion of the results of rigorous electrodynamics modeling using the finite-difference time-domain (FDTD) method. Such calculations may be used to validate ideas and concepts based on approximate models. Detailed inspection and analysis of the results can also lead to the development of new physical pictures. In particular, FDTD calculations are used to show (i) how it is possible to increase the propagation lengths of surface plasmon polaritons with the use of appropriate dielectric underlayers, (ii) how to efficiently bend light in a subwavelength region, and (iii) how nanoholes and wells in metal films can exhibit complex transmission spectra of relevance to sensing.

1Argonne National Laboratory’s work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract DE-AC02-06CH11357.