Specific Resistance and Scattering Asymmetry of Py/Pd, Fe/V, Fe/Nb, and Co/Pt Interfaces

AMIT SHARMA, TONY ROMERO, NIKOLETA THEODOROPOULOU, REZA LOLOEE, WILLIAM PRATT JR., JACK BASS, Physics Department, Michigan State University — The properties of interfaces between normal (N) and ferromagnetic (F) metals, described by specific resistance, AR^* ($A =$ area, $R =$ resistance), and scattering asymmetry, γ, are of interest to optimize current-perpendicular-to-plane (CPP) magnetoresistance (MR) and current-induced magnetization-switching (CIMS) in nanopillars. Sputtered standard Py/Cu, Co/Cu, and Fe/Cr interfaces have $2AR^* \sim 1 \text{ f}\Omega\text{m}^2$ and $\gamma \sim 0.7$. Recently, sputtered F/Al interfaces with F = Py, Co, Fe, and Co(91)Fe(9) were found to have very large $2AR^* \sim 9 \text{ f}\Omega\text{m}^2$, but small $\gamma \leq 0.1$ [1]. In hopes of finding interfaces with both large $2AR^*$ and larger γ than for F/Al, we have determined $2AR^*$ and γ at 4.2K for sputtered Py/Pd, Fe/V, Fe/Nb, and Co/Pt pairs, where we’ve matched crystal structures of the F and N metals. We will present our data and our derived values of $2AR^*$ and γ. [1] N. Theodoropoulou et al., J. Appl. Phys. 99, 08G502 (2006); ibid., IEEE Trans. on Magn. (Submitted).

1Supported by NSF Grants DMR 02-02476 and 05-01013.