MAR07-2006-000686

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

Directing the assembly of nanostructured films with living cells

C. JEFFREY BRINKER, Fellow, Šandia National Laboratories; Regents Professor of Chemical Engineering, the University of New Mexico, Albuquerque, NM.

This talk describes our recent discovery of the ability of living cells to organize extended nanostructures and nano-objects in a manner that creates a unique, highly biocompatible nano//bio interface (*Science* **313**, 337-340, 2006). We find that, using short chain phospholipids to direct the formation of thin film silica mesophases during evaporation-induced self-assembly, the introduction of cells (so far yeast and bacteria) alters profoundly the inorganic self-assembly pathway. Cells actively organize around themselves an ordered, multilayered lipid-membrane that interfaces coherently with a lipid-templated silica mesophase. This bio/nano interface is unique in that it withstands drying (even evacuation) without cracking or the development of tensile stresses – yet it maintains accessibility to molecules, proteins/antibodies, plasmids, etc - introduced into the 3D silica host. Additionally cell viability is preserved for weeks to months in the absence of buffer, making these constructs useful as standalone cell-based sensors. The bio/nano interfaces we describe do not form 'passively' – rather they are a consequence of the cell's ability to sense and actively respond to external stimuli. During *EISA*, solvent evaporation concentrates the extracellular environment in osmolytes. In response to this hyperosmotic stress, the cells release water, creating a gradient in pH, which is maintained within the adjoining nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and a variety of other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting – processes allowing patterning of cellular arrays - and even spatially-defined genetic modification.