MAR07-2006-000759

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

Theory of transport through molecular magnets

HERBERT SCHOELLER, Institut für Theoretische Physik A, RWTH Aachen, Germany

Quantum transport through single molecular magnets (SMM) is starting to become a new exciting field in molecular spin electronics. Recent experiments [1,2] have shown that magnetic excitations can be identified in transport measurements and that NDC effects and complete current suppression can be explained by charge dependent anisotropies. Recent theoretical investigations [3,4,5] are presented which demonstrate fingerprints of quantum tunneling of magnetization (QTM). For weak tunneling, the violation of spin-selection rules leads to the occurrence of fake resonances with temperature-dependent position [3]. For strongtunneling, it is show that a pseudo spin-1/2 Kondo effect is induced by QTM. If the Kondo temperature T_K is smaller than the distance to excited magnetic states, selection rules depending on spin and symmetry of the SMM are derived for the Kondo effect to occur [4]. If T_K exceeds the anisotropy barrier, it is shown that a reentrant Kondo effect can be induced by application of a longitudinal magnetic field for SMM with half-integer or integer spin [5]. This effect can be used for transport spectroscopy of the various anisotropies characterizing a SMM.

- [1] H.B. Heersche et al., Phys. Rev. Lett. 96, 206801 (2006).
- [2] Moon-Ho Jo et al., Nano Lett. 6, 2014 (2006).
- [3] C. Romeike, M.R. Wegewijs, H. Schoeller, Phys. Rev. Lett. 96, 196805 (2006).
- [4] C. Romeike, M.R. Wegewijs, W. Hofstetter, H. Schoeller, Phys. Rev. Lett. 96, 196601 (2006).
- [5] C. Romeike, M.R. Wegewijs, W. Hofstetter, H. Schoeller, to be published in Phys. Rev. Lett., cond-mat/0605514.