Abstract Submitted for the MAR07 Meeting of The American Physical Society

Interplay between Disorder and Quantum and Thermal Fluctuations in Ferromagnetic Alloys – New Systems¹ G.R. STEWART, J.S. KIM, University of Florida, M.B. SILVA NETO, ITP, University of Stuttgart, A.H. CAS-TRO NETO, Boston University — Previously¹ we addressed the effects of disorder on the ferromagnetic ordering temperature, T_C , in $UCu_2Si_{2-x}Ge_x$. In that work the measured non-monotonic variation of T_C with disorder (as measured by the resistivity) could be explained within a model² of localized spins interacting with an electronic bath. This model predicts that, in some cases, T_C can be enhanced by the interplay between quantum and thermal fluctuations with disorder. We have extended this work in other ferromagnetic alloys, with both significantly larger as well as similar variations of T_C with doping compared to the <10 % variation of T_C observed in $UCu_2Si_{2-x}Ge_x$. Resistivity, magnetic susceptibility, and specific heat will be presented, along with a comparison to the theory². ¹M. B. Silva Neto, A. H. Castro Neto, D. Mixson, J. S. Kim, and G. R. Stewart, Phys. Rev. Lett. 91, 257206 (2003). ²M. B. Silva Neto and A. H. Castro Neto, Europhys. Lett. 62, 890 (2003).

¹Work at UF supported by DOE contract no. DE-FG02-86ER45268; work at BU supported by NSF contract no. DMR-0343790

G. R. Stewart Univ. of Florida

Date submitted: 14 Nov 2006

Electronic form version 1.4