Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Determining the Time Evolution of Bose-Einstein Condensate1
MERIDETH FREY, Wellesley College — Bose-Einstein condensates (BEC) offer a
macroscopic way to analyze the quantum mechanical world. In order to measure
most properties of these condensates, the cooled atomic gas must be released from
its potential trap and allowed to expand. Oftentimes an analytic solution for the
time-evolution of the BEC wavefunction after release from the trap cannot be found
and a numerical solution is needed. By applying a recent numerical method for
solving the Gross-Pitaevskii equation, the time-evolution for BEC after release from
potential traps of various geometries can be found. For this project, spherically and
cylindrically symmetric traps are analyzed. When applicable, the numerical results
are compared with analytical solutions to evaluate the error in the method. Numeri-
cal solutions will also be found for potential trap geometries that produce interesting
interference effects due to the quantum behavior of Bose-Einstein condensates.

1Supported by the 2006 Schiff Fellowship.

Merideth Frey
Wellesley College

Date submitted: 15 Nov 2006
Electronic form version 1.4