Influence of Charge State on the Reaction of FeO$_3^{+/-}$ with Carbon Monoxide

J.U. REVELES, S.N. KHANNA, Virginia Commonwealth University, N.M. REILLY, G.E. JOHNSON, A.W. CASTLEMAN JR., Penn State University — A synergistic study combining experiments in molecular beams and first principles electronic structure calculations within a gradient corrected density functional approach is used to investigate the reactivity of charged FeO$_3$ clusters with CO. It is shown that highly oxidized iron clusters are able to readily effect the oxidation of CO to CO$_2$ at ambient temperature. Calculated energy profiles of the reaction demonstrate that the oxidation efficiency is governed by the strength of oxygen binding to the iron atom. Results for FeO$_3^{+/-}$ are presented and reveal that cation clusters are more efficient than the corresponding anion clusters at effecting the oxidation reaction due to different bond energies resulting from charge distribution.

Arthur Reber
Virginia Commonwealth University

Date submitted: 15 Nov 2006