Flux Growth of Heavy Fermion LiV$_2$O$_4$ Single Crystals1 S. DAS, X. ZONG, A. NIAZI, D.C. JOHNSTON, Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 — The spinel-structure compound LiV$_2$O$_4$ is a rare d- electron heavy fermion. Measurements on single crystals are needed to clarify the mechanism for the heavy fermion behavior. In addition, it is known that small concentrations (< 1 mol%) of magnetic defects in the structure strongly affect the properties, and measurements on single crystals containing magnetic defects would help to understand the latter behaviors. Herein, we report growth at 950–1030 °C of 1 mm3 size octahedron-shaped LiV$_2$O$_4$ single crystals using a self- flux technique. The magnetic susceptibility of the as-grown crystals shows a Curie-like upturn at low temperatures arising from \approx 0.5 mol% magnetic defects within the spinel structure. After annealing at 700 °C, the Curie-like upturn (and magnetic defects) disappeared in some crystals, thus revealing the known intrinsic nearly temperature-independent behavior below \sim 20 K. Preliminary heat capacity measurements on as-grown crystals containing magnetic defects showed a high linear specific heat coefficient $\gamma = 450$ mJ/ (mole K2) at 1.8 K. Additional electronic transport, magnetic and thermal measurements on both as-grown and annealed crystals will be presented.

1Work supported by the USDOE under Contract No. W-7405-Eng-82.