Commensurate and incommensurate charge order in Fe$_2$OBO$_3$

MANUEL ANGST, Oak Ridge National Laboratory, Oak Ridge TN 37831,
RAPHAEL HERMANN, FZ Juelich, 52425 Juelich, Germany, JONG-WOO KIM,
Ames Laboratory, Ames IA 50011, PETER KHALIFAH, U Massachusetts, Amherst
MA 01003, BRIAN C. SALES, DAVID G. MANDRUS, Oak Ridge National Laboratory,
Oak Ridge TN 37831 — Charge order CO in the form of a Wigner crystal had
been proposed by Attfield et al. [Nature 396, 655 (1998)] based on measurements,
particularly Mössbauer spectroscopy, on polycrystalline Fe$_2$OBO$_3$, but no super-
structure due to the CO had been detected. We have grown the first single crystals
of pure Fe$_2$OBO$_3$, and resistivity and thermal analysis indicate not one, but two
transitions associated with CO. To elucidate the nature of these two transitions a
synchrotron study was performed. At low T a superstructure corresponding to a dou-
bling of the a axis was observed for the first time. The phase between the two phase
transitions, in contrast, exhibits an incommensurate modulation with propagation
vector $(\frac{1}{2},0,\tau)$, τ increasing with T towards $\frac{1}{2}$. Resonances in the energy-dependence
of the scattered intensity around the Fe K edge suggest that the modulations in both
phases are indeed associated with CO.