Evolution of the CO-OO and AF ordering in the single-layer manganite \(\text{Pr}_{1-x}\text{Ca}_{1+x}\text{MnO}_4 \) near half doping

FENG YE, J. A. FERNANDEZ-BACA, Oak Ridge National Lab., SONGXUE CHI, PENGCHENG DAI, Univ. of Tennessee, Knoxville, J. W. LYNN, NIST Center for Neutron Research, R. MATHIEU, Y. KANEKO, ERATO-SSS, Y. TOKURA, Univ. of Tokyo — Manganese oxides have attracted considerable attention due to the CMR effect observed in the perovskite manganite \(A_{1-x}A'_x\text{MnO}_3 \) near \(x = 0.3 \). A peculiar charge/orbital (CO-OO) accompanied by antiferromagnetic (AF) order occurs when the carrier concentration is close to half doping \((x=0.5)\). To understand the interplay between the charge, lattice and spin degrees of freedom in such insulating state, we used elastic neutron scattering to study the evolution of the CO-OO as well as the AF correlations in the single-layer manganite \(\text{Pr}_{1-x}\text{Ca}_{1+x}\text{MnO}_4 \) \((x = 0.40, 0.45\) and \(0.50)\). Upon cooling, all three samples exhibit long-range CO-OO near 300 K. However, only the \(x = 0.50 \) system displays long-range AF order at low temperatures. The CE-type AF correlations are quickly suppressed and become short-ranged as more \(e_g \) electrons are introduced to the \(\text{MnO}_2\) plane. More interestingly, the CO-OO and AF order associated with Mn\(^{3+}\) ions appears at incommensurate positions while the AF order associated with Mn\(^{4+}\) ions remains commensurate. Our observations indicate that the orbital physics play an important role in the understanding of the electronic and magnetic properties of doped manganites.

Feng Ye
ORNL

Date submitted: 15 Nov 2006
Electronic form version 1.4