Abstract Submitted for the MAR07 Meeting of The American Physical Society

Phenomenological theory of the underdoped phase of a high-T_c superconductor¹ ALEXEI TSVELIK, Brookhaven National Laboratory, AN-DREY CHUBUKOV, University of Wisconsin, Madison — We model the Fermi surface of the cuprates by one-dimensional nested parts near $(0, \pi)$ and $(\pi, 0)$ and unnested parts near the zone diagonals. Fermions in the nested regions form 1D spin liquids, and develop spectral gaps below some $\sim T^*$, but superconducting order is prevented by 1D phase fluctuations. We show that the Josephson coupling between order parameters at $(0, \pi)$ and $(\pi, 0)$ locks their relative phase at a crossover scale $T^{**} < T^*$. Below T^{**} , the system response becomes two-dimensional, and the system displays Nernst effect. The remaining total phase gets locked at $T_c < T^{**}$, at which the system develops a (quasi-) long-range superconducting order.

¹US DOE under contract number DE-AC02 -98 CH 10886, NSF DMR 0240238.

Alexei Tsvelik Brookhaven National Laboratory

Date submitted: 15 Nov 2006

Electronic form version 1.4