Mott Transition, Antiferromagnetism, and d-wave Superconductivity in Two-Dimensional Organic Conductors1 A.-M.S. TREMBLAY, BUMSOO KYUNG, Universite de Sherbrooke — We study the Mott transition, antiferromagnetism and superconductivity in layered organic conductors using Cellular Dynamical Mean Field Theory for the frustrated Hubbard model. A d-wave superconducting phase appears between an antiferromagnetic insulator and a metal for $t'/t = 0.3 - 0.7$, or between a nonmagnetic Mott insulator (spin liquid) and a metal for $t'/t \geq 0.8$, in agreement with experiments on layered organic conductors including κ-(ET)$_2$Cu$_2$(CN)$_3$. These phases are separated by a strong first order transition. The phase diagram gives much insight into the mechanism for d-wave superconductivity. Two predictions are made.

1Supported by NSERC (Canada), FQRNT (Québec), CFI (Canada), CIAR, Tier I Canada Research Chair Program (A.-M.S.T.)