Nano-helix based quantum transistor, charge pump and motor

XIAOLIANG QI, SHOUCHENG ZHANG, Stanford University — We propose several novel device concepts based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, enabling the construction of a new type of transistor switch. The band gap is purely determined by the applied transverse voltage, and can be continuously tuned. The resulting light-emitting-diode can emit light with a tunable color spectrum. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through the helical wire in the presence of a transverse static electric field leads to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

1This work is supported by the NSFC under the grant No. 10374058 and No. 90403016 and the NSF under the grant No. DMR-0342832 and and the US Department of Energy, Office of Basic Energy Sciences under contract No. DE-AC03-76SF00515.

Xiaoliang Qi