Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

NMR study of Nb-deficient effect in NbB$_2$ T.H. SU, C.S. LUE, Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan — Observations of the Nb-deficiency enhanced superconducting temperature (T_C) in NbB$_2$ have been reported. In order to provide experimental information for this effect, we have carried out the nuclear magnetic resonance (NMR) study of Nb$_{1-x}$B$_2$ ($x = 0, 0.13, 0.20, and 0.26$) in the normal state. From both 11B and 93Nb NMR spin-lattice relaxation rates, we can deduce the B-2p and Nb-3d partial Fermi-level density of states (DOS) for each individual composition. The result indicates that the B-2p and Nb-3d partial Fermi-level DOS increase with Nb deficient level. Such a tendency is consistent with the trend of the superconducting temperature, revealing that the observed T_C enhancement is strongly correlated to the increase of the Fermi-level DOS induced by the Nb deficiency.