MAR07-2006-001169

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

Magnetic Relaxation and Minority Spin Condensate in Spin-Polarized Superfluid ³He A_1^1 HARRY KOJIMA, Rutgers University

The magnetic relaxation phenomena in superfluid ³He A₁ phase are studied using a magnetic fountain pressure detector in which a large reservoir is connected to a small sensor chamber through two superleak channels of height 18 μ m. Superflow in simultaneous mass/spin current is driven by an externally applied magnetic field. Measurements of the relaxation of the induced fountain pressure are carried out under a variety of conditions including pressure(3 - 29 bar), temperature, static field(up to 8 T) and ⁴He(5 monolayers) coverage. The relaxation of the fountain pressure arises from the time dependent spin density in the sensor chamber. The observed relaxation time τ varies from 80 s near the upper transition temperature, T_{c1}, to less than 0.1 s near the lower transition temperature, T_{c2}. The measured relaxation rate increases starting near the middle of A₁ phase and more rapidly as the T_{c2} is approached. The ⁴He coverage is observed not to affect the measured spin relaxation rate and this indicates that the relaxation is a bulk liquid effect. The rapid increase in relaxation rate is interpreted in terms of the Leggett-Takagi¹ mechanism of intrinsic spin relaxation arising from a small but increasing presence of minority spin pair condensate²(with pair magnetic moment aligned in the opposite direction to the applied field) in A₁ phase as T_{c2} is approached. It is concluded that the conventional view of the superfluid A₁ phase being composed of condensate pairs with magnetic moment aligned the applied field is inadequate.

¹ A.J. Leggett and S. Takagi, Ann. Phys. **106**, 79(1977).

² H. Monien and L. Tewordt, J. Low Temp. Phys. **60**, 323(1985).

¹In collaboration with A. Yamaguchi, S. Kobayashi and H. Ishimoto. Supported in part by NSF, MEXT and JSPS.