Structural and spectroscopic characterization of double perovskites $\text{La}_2\text{Co}_{4/3}\text{M}_{2/3}\text{O}_6$ ($\text{M}=\text{V}, \text{Nb} \text{ or } \text{Ta}$) and $\text{La}_{4/3}\text{Bi}_{2/3}\text{Co}_{4/3}\text{Ta}_{2/3}\text{O}_6$

V.C. FUERTES, M.C. BLANCO, D.G. FRANCO, INFIQC, UNC, Córdoba, Argentina, J.M. DE PAOLI, CNEA-CAB, Bariloche, Argentina, F.P. DE LA CRUZ, N.E. MASSA, LANAIS EFO-CEQUINOR, UNLP, CP 962, 1900 La Plata, Argentina, R.E. CARBONIO, INFIQC, UNC, Córdoba, Argentina — We report the synthesis of the title compounds and the refinement of their structures using Rietveld analysis of powder XRD data. All belong to the monoclinic space group $P2_1/n$. While the crystallographic formula can be written as $\text{La}_2(\text{Co})_{2a}(\text{Co}_{1/3}\text{M}_{2/3})_{2b}\text{O}_6$ for $\text{M}=\text{Nb} \text{ or } \text{Ta}$, indicating the highest possible order for the cations, we find $\text{La}_2(\text{Co}_{2/3}\text{V}_{1/3})_{2a}(\text{Co}_{2/3}\text{V}_{1/3})_{2b}\text{O}_6$ for V replacement indicating the highest disorder configuration. The cell volume for $\text{La}_2\text{Co}_{4/3}\text{M}_{2/3}\text{O}_6$ decreases as the ionic radius of the M^{5+} cation decreases. These compounds were previously shown to be ferrimagnetic with Curie temperatures in the range 60-70 K. Since the incorporation of cations with the sp hybridized lone pair can potentially induce ferroelectric properties, we also synthesized $\text{La}_{4/3}\text{Bi}_{2/3}\text{Co}_{4/3}\text{Ta}_{2/3}\text{O}_6$ where we found a partial cations disorder. Crystal and magnetic structures refined with powder neutrons diffraction measurements as well as the infrared spectroscopic characterization, now in progress, will be presented.