Does the $t' - t - J$ model catch the main features of the cuprates phase diagram?
LEONARDO SPANU, MASSIMO LUGAS, FEDERICO BECCA, SANDRO SORELLA, International School for Advanced Studies and INFM Democritos National Simulation Center, Trieste — Using the Green’s Function Monte Carlo Technique (GFMC), we investigate the effects of the t' interaction on the phase diagram of the $t-J$ model and its possible relevance for the physics of high-temperature superconductors (HTcS). In practice, we consider a very accurate guiding wave function including both magnetic and superconducting order parameters, as well as long-range Jastrow factors, in order to reproduce the correct low-energy spin and charge excitations. The t' interaction induces a suppression of the antiferromagnetic order parameter for hole concentration $\delta \sim 3 - 4\%$ (for $t' = -0.2t$ and $J/t = 0.2$), while the paramagnetic phase is characterized by an incommensurate peak in the spin structure factor. The inclusion of the t' term allows one to strongly suppress superconductivity at small doping, i.e., for $\delta < 6\%$. On the contrary, away from the antiferromagnetic phase, d-wave pairing correlations are enhanced up to the optimally doping region ($\delta \sim 20\%$). Our results then indicate that the $t' - t - J$ model, though it is a very simple and crude approximation of realistic materials, is able to capture important properties of the HTcS phenomenology.