MAR07-2006-001176

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

Superconductivity in alkaline earth-intercalated graphites: CaC_6 and SrC_6^1 JUN SUNG KIM, Max-Planck-Institut fuer Festkoerperforschung

The recent discovery of superconductivity in alkaline earth-intercalated graphites $\operatorname{CaC}_6(T_c = 11.5 \text{ K})$ with substantially higher T_c 's than the previously known, has renewed the interest in the graphite intercalated compounds and stimulated a debate about the relevant pairing mechanisms. We have investigated the superconducting properties of high-quality CaC_6 samples, using specific heat (C_P) and magnetization measurements. For CaC_6 , the exponential temperature dependence of the electronic C_P and its linear dependence on the magnetic fields provide evidence for a fully-gapped, intermediate-coupled, and phonon-mediated superconductor without essential contributions from alternative paring mechanisms. However, the C_P anomaly at T_c is found to be much smaller than expected from theory, indicating a possible anisotropy in the superconducting gap. Consistently, the anisotropy of the upper critical field $H_{c2}^{\parallel}/H_{c2}^{\perp}$ is also larger than expected from the Fermi velocities, and shows significant temperature dependence below T_c . Recently, we also discovered the superconductivity in SrC_6 at T_c = 1.65(6) K as well as the absence of superconductivity in BaC_6 down to 0.3 K. Similar to CaC_6 , the C_P anomaly of SrC_6 is somewhat lower than that theory predicted, but the discrepancy is much reduced. The anisotropy of H_{c2} for SrC_6 is also found to be much smaller than that of CaC_6 , indicating a reduced superconducting gap anisotropy. Finally, we will discuss the significantly lower T_c of SrC_6 than CaC_6 as well as their positive pressure dependence in terms of the *e-ph* coupling with the in-plane intercalant and the out-of-plane C phonon modes, based on *ab-initio* calculations. Implications of the present findings on the superconducting mechanisms in alkaline-earth as well as alkali- intercalated graphites will also be given.

¹Work done in collaboration with L. Boeri, F. S. Razavi, J. R. O'Brien, and R. K. Kremer.