Quantum criticality and coexistence of spontaneous ferromagnetism and field-induced metamagnetism in triple-layered Sr\(_4\)Ru\(_3\)O\(_{10}\)\(^1\)

SHALINEE CHIKARA, VINOBALAN DURAIRAJ, GANG CAO, JOSEPH W. BRILL, Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, PEDRO SCHLOTTMANN, Department of Physics, Florida State University, Tallahassee, FL 32306 — Results of a thermodynamic and transport study of Sr\(_4\)Ru\(_3\)O\(_{10}\) as a function of temperature and magnetic field are presented. The central results of this work include growing specific heat \(C\) with increasing field \(B\), divergent magnetic contribution to \(C\) at low temperatures, an abrupt jump and a peak in \(C/T\) at \(B=2.90\) T and \(=7\) T for \(B\)\(\parallel\)ab-plane and \(B\)\(\parallel\)c-axis, respectively, and corresponding changes in the power law of resistivity. All results provide not only strong evidence for metamagnetic quantum criticality but also quantum fluctuations in a spontaneously ferromagnetic state. The novelty of this work lies in the fact that the quantum criticality occurs in a system that shows both intralayer metamagnetism and interlayer spontaneous ferromagnetism, a feature characteristically different from all other relevant systems involving quantum criticality.

\(^1\)This work was supported by NSF grants DMR-0240813 and DMR-0552267 and DOE grant DE-FG02-98ER45707.

Shalinee Chikara
University of Kentucky

Date submitted: 16 Nov 2006

Electronic form version 1.4