Abstract Submitted for the MAR07 Meeting of The American Physical Society

Superconducting and Normal State Properties of OsB₂* YOGESH SINGH, A. NIAZI, X. ZONG, B.J. SUH[†], M.W. VANNETTE, R. PROZOROV, D.C. JOHNSTON, Ames Lab. and Dept. Phys. and Astron., Iowa State Univ., Ames, IA $50011 - OsB_2$ is a layered superhard metallic material that was found to superconduct below $T_{\rm c} = 2.1 \text{ K}^{1}$ We report the first detailed measurements of the static and dynamic magnetic susceptibilities χ , electrical resistivity, heat capacity $C_{\rm p}$, penetration depth, and ¹¹B NMR on OsB₂ to characterize its superconducting and normal state properties. The results confirm that OsB_2 is a bulk superconductor below $T_{\rm c} = 2.1$ K. Its properties can be described by a close to weakcoupling s-wave BCS model with an electron-phonon coupling constant $\lambda = 0.4$ -0.5, $\Delta(0)/(k_{\rm B}T_{\rm c}) \approx 1.9$, a small Ginzburg-Landau parameter κ of order 5 or less, and a small zero-temperature critical magnetic field of roughly 500 Oe. The ¹¹B NMR measurements in the normal state show a nuclear spin-lattice relaxation time $T_1 = 2.1$ s at room temperature and a Korringa law with $T_1T = 610 \text{ s} \cdot \text{K}$ at lower T, and a correspondingly small T-independent Knight shift. These results indicate a small scharacter of the conduction electron wave function at the B site at the Fermi level. Our results will be compared to corresponding data for MgB_2 . 1. J. K. Vandenberg et al., Mater. Res. Bull. 10, 889 (1975). *Supported by the USDOE under Contract No. W-7405-Eng-82. [†] Permanent address: Dept. Phys., The Catholic Univ. Korea.

> Yogesh Singh Ames Lab. and Dept. Phys. and Astron., Iowa State Univ., Ames, IA 50011

Date submitted: 17 Nov 2006

Electronic form version 1.4