Abstract Submitted for the MAR07 Meeting of The American Physical Society

Pressure-Dependent Magnetization Studies of Two Rare Earth-Based Intermetallic Systems¹ R.P. GUERTIN, Tufts Univ., E.S. CHOI, Florida State Univ., B. ANDRAKA, C.R. ROTUNDU, Univ. of Florida, W. MCCAL-LUM, Y. JANSSEN, Iowa State Univ. - Pressure dependent magnetization studies have been performed on two rare earth-based ternary intermetallic systems, R_2CoIn_8 , where R=Gd, Dy and Pr, and $Pr_6Ni_2Si_3$, the n=2 member of the $Pr_{(n+1)(n+2)}Ni_{n(n+1)+2}Si_{n(n+1)}$ family. The pressure dependence of the magnetization was measured for 2 < T < 300 K, 0 < H < 9 T and hydrostatic pressures $0 \le P \le 8$ kbar using a vibrating sample magnetometer. For the R₂CoIn₈ system, R=Dy and Gd order antiferromagnetically at $T_N=17.0$ and 34.5 K, respectively and $dT_N/dP = +0.1$ K/kbar for R=Dy and +0.4 K/kbar for R=Gd. Pr₂CoIn₈ is a van Vleck paramagnet, indicating a crystalline electric field (CEF) singlet ground state. For $Pr_6Ni_2Si_3$, the Curie temperature ($T_C = 35.0$ K) and the saturation magnetization (1.35 μ_B/Pr) decrease non-linearly with increasing pressure, consistent with a pressure-induced increase in the CEF splitting. The Pr^{3+} ground state is presumably a singlet, as the local Pr symmetry is very low. Preliminary high field VSM data suggest that a CEF level crossing occurs at 10.5 T where magnetization increases sharply to above 3.0 μ_B/Pr .

¹Supported by NHMFL Visiting Scientist Program #43

R. P. Guertin Tufts University

Date submitted: 17 Nov 2006

Electronic form version 1.4