Abstract Submitted for the MAR07 Meeting of The American Physical Society

Evidence for a disorder-dependent localization correction to the anomalous Hall conductance of ultrathin Fe films RAJIV MISRA, ARTHUR F. HEBARD, Department of Physics, University of Florida, FL 32611 — We present an experimental study of quantum corrections to the conductivity tensor of thin ferromagnetic films when the disorder is systematically varied. Using the sheet resistance as a measure of disorder, in situ magnetotransport studies were performed on a series of thin iron films deposited onto sapphire substrates having sheet resistance $R_0 \equiv R_{xx}(5\text{K})$ varying over the range 140 Ω (60Å) to 6250 Ω (<20 Å). For temperatures T < 20 K, a logarithmic temperature dependence of the longitudinal R_{xx} and anomalous Hall resistances R_{xy}^{AH} is observed. In the low disorder limit $(R_0 < 150 \Omega)$, we find that relative changes in the anomalous Hall conductivity $\delta \sigma_{xy}^{AH} / \sigma_{xy}^{AH}$ exhibit a temperature independent behavior implying that there are no quantum corrections to σ_{xy}^{AH} . As disorder increases, a finite logarithmic temperature dependence to $\delta \sigma_{xy}^{AH} / \sigma_{xy}^{AH}$ appears and then evolves toward a universal weak localization correction defined by the equality $\delta \sigma_{xy}^{AH} / \sigma_{xy}^{AH} = -\delta R_{xy}^{AH} / R_{xy}^{AH}$ [1]. Thus with increasing disorder, we see a crossover from a region where there are no quantum corrections to σ_{xy}^{AH} to a region dominated by weak localization corrections. These results for iron, where spin is carried by itinerant electrons, will be compared with data on thin films of gadolinium, a localized moment system. [1]. Mitra P. et al. cond-mat 0606215 (2006)

> Rajiv Misra Department of Physics, University of Florida, FL 32611

Date submitted: 16 Nov 2006

Electronic form version 1.4