Analytic Properties of Moments Matrices WILLIAM J. MAS-
SANO, SUNY Maritime, VASSILIOS FESSATIDIS, Fordham University, JAY D.
MANCINI, Kingsborough College of CUNY, SAMUEL P. BOWEN, Chicago State
University, ROBERT K. MURAWSKI, Texas A&M University — Associated with
each matrix element of the recently developed Generalized Moments Expansion,
GMX(n,m) there is a unique expansion for the ground state energy in terms of the
“connected moments” I_k of the Hamiltonian (Phys. Lett. A349, 320 [2006]). That
is, for any set \{n,m\} a polynomial in the I_k’s may be generated to any desired
order L, which is dependent upon the highest moment calculated. Here we wish to
study the eigenvectors and eigenvalues of the GMX matrix itself. Furthermore we
investigate the interplay between the set \{n,m\} and the order L of the matrix in
determining which combination \{n,m,L\} yields the “best” (i.e. most convergent)
result for the ground state energy.

Vassilios Fessatidis
Fordham University, Bronx, NY

Date submitted: 16 Nov 2006

Electronic form version 1.4