Spin polarization of the ferromagnetic semimetal EuB$_6$ XIANG-HANG ZHANG, STEPHAN VON MOLNAR, PENG XIONG, Department of Physics and MARTECH, Florida State University, ZACH FISK, Department of Physics, University of California at Irvine — Much progress has been made recently in the understanding of the electronic properties of EuB$_6$. However, the details of the electronic structure remain controversial. Several band structure calculations have produced different degrees of conduction-valence band overlap for the two spin subbands. In particular, some calculations predict a half-metallic band structure, ie, 100% spin polarization at the Fermi level1. We have performed direct measurements of the spin polarization of EuB$_6$ crystals using Andreev reflection spectroscopy. Planar junctions of EuB$_6$/Pb were fabricated on crystals grown with an Al flux method. The conductance spectra were measured using phase-sensitive detection at several temperatures below T_C of Pb. The spectra are well-described by the spin-polarized BTK model. More than seven junctions were measured and a spin polarization of 55 ± 10% is obtained. Our results indicate that in ferromagnetic EuB$_6$ the electrons and holes at the Fermi level are not fully spin-polarized. This work was supported by a FSU Research Foundation PEG grant and NSF grant under DMR-0503360.

1J. Kunes and W.E. Pickett, PRB 69, 165111 (2004); M. Kreissle and W. Nolting, PRB 72, 245117 (2005).