Critical Behavior Near the Ferromagnetic Transition in Nanostructured Gadolinium1 PAUL SHAND, JUSTIN BOHNET, University of Northern Iowa, JARED GOERTZEN, JEFFREY SHIELD, GEOFFREY SHELBURNE, DAVID SCHMITTER, DIANDRA LESLIE-PELECKY, University of Nebraska-Lincoln — ac susceptibility and dc magnetization have been measured near the ferromagnetic transition in melt-spun nanostructured Gd. Effective critical exponents and the critical temperature were extracted using modified Arrott plots. The values obtained were $\beta_{\text{eff}} = 0.415 \pm 0.005$, $\gamma_{\text{eff}} = 1.36 \pm 0.04$, $\delta_{\text{eff}} = 4.24 \pm 0.02$, and $T_C = 290.0 \pm 0.1$ K. These exponent values satisfy the scaling relation $\beta\delta = (\beta+\gamma)$. The experimental exponent values are also close to those for a short-range 3D Heisenberg ferromagnet; however, there is a systematic shift toward mean-field values. Such a shift has been previously seen in amorphous ferromagnets and is likely due to the presence of longer-ranged interactions, especially in Gd-based alloys. The critical exponents for nanostructured Gd are closer to the short-range 3D Heisenberg exponents than are those for amorphous Gd\textsubscript{67}Co\textsubscript{33} and Gd\textsubscript{80}Au\textsubscript{20}. This suggests that the dominant Gd-Gd interactions are shorter-ranged in nanostructured Gd than in the amorphous alloys.

1Funded by NSF Grant Nos. DMR-0504177 and DMR-0504706