Abstract Submitted for the MAR07 Meeting of The American Physical Society

Piezomagnetism in Epitaxial Cr₂O₃ Thin Films¹ YI WANG, SARBESWAR SAHOO, CHRISTIAN BINEK, University of Nebraska-Lincoln, BINEK TEAM — Recently, the magnetoelectric material Cr₂O₃ attracted renewed interest due to its potential for future spintronics applications which can be realized by novel magnetic thin film heterostructures [1]. Here we study thin films of Cr₂O₃ (111) on c-Al₂O₃ (111) substrate which are grown by thermal evaporation of Cr metal in an O₂ atmosphere. X-ray diffraction data reveal stoichiometric epitaxially grown Cr_2O_3 (111) films. Owing to a lattice mismatch of $\sim 4\%$ at the interface between the Al₂O₃substrate and the film we observe a strong stress induced piezomagnetic moment in the Cr_2O_3 film. We measure the temperature dependence of this piezomoment by Superconducting Quantum Interference Device (SQUID) magnetometry and Kerr rotation. The presence of high inherent stress, a significant piezomagnetic moment and the possibility to realize high electric fields makes our Cr₂O₃ thin films ideal candidates for the challenging quest of the symmetry allowed but hitherto undiscovered piezomagnetoelectric effect. [1] Ch. Binek, B. Doudin, J. Phys. Condens. Matter 17, L39 (2005).

¹Financial support from the NSF through Career DMR-0547887, NRI and the NSF MRSEC DMR-0213808 is gratefully acknowledged.

Christian Binek University of Nebraska-Lincoln

Date submitted: 17 Nov 2006 Electronic form version 1.4