Temperature rise due to Joule heating in a spin transfer torque nano-pillar structure1 CHUN-YEOL YOU, SEUNG-SEOK HA, Dept. of Physics, Inha University, HYUN-WOO LEE, Dept. of Physics, Pohang University of Science and Technology — Considering that the spin-transfer-torque-induced magnetization dynamics in a nano-pillar structure usually requires a large current density of 10^{11} A/m2, it is desired to have an accurate estimation of the temperature rise caused by the current-induced Joule heating. We investigate the current-induced heating effect in the nano-pillar by analytical and numerical methods. We employ the Green’s function method to obtain analytic solution of the heat conduction equation. With proper approximations, we derive a simple analytic relation that expresses the temperature in term of the current density, the geometry of the nano-pillar, and material properties. The validity of the analytic expression is confirmed by the comparison with commercial finite element method software.

1This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-070-C00053).