Abstract Submitted for the MAR07 Meeting of The American Physical Society

Structural and Electronic Properties of Monoclinic TiO₂ (B) Polymorph MICHEL POSTERNAK, ALFONSO BALDERESCHI, EPF-Lausanne, Switzerland, BERNARD DELLEY, Paul Scherrer Institut, Switzerland — Three major polymorphs of TiO₂ are known: rutile, anatase, and brookite. A further phase, TiO₂ (B), which coexists with, and derives from natural anatase has recently been identified¹. It is monoclinic with C_{2h}^3 space group, and its conventional cell contains 8 TiO₂ formula units. Using the DMol³ approach², we study the structural and electronic properties of this polymorph in terms of the OTi₃ complex, that we have recently shown³ to be the relevant building block for describing the electronic properties of the three major polymorphs. At variance with these latter cases, the 16 O atoms in TiO₂ (B) are *not* all threefold coordinated: indeed, 12 O atoms belong to anataselike OTi₃ structural units, and the remaining 4 O atoms are twofold coordinated. The outcome of structural differences on the electronic properties of the TiO₂ phases is analyzed.

¹J.F.Banfield *et al.*, Am. Mineral. **76**, 343 (1991).
²B. Delley, J. Chem. Phys. **113**, 7756 (2000).
³M. Posternak *et al.*, Phys. Rev. B **74**, 125113 (2006).

Michel A. Posternak EPFL SB ITP CPNMC, PH D2 345, Station 3, CH-1015 Lausanne

Date submitted: 20 Nov 2006

Electronic form version 1.4