Carbon nanotube and oxide nanobelt FETs: fabrication, characterization and applications

PENG XIONG, Department of Physics and MARTECH, Florida State University

High-performance field effect transistors (FETs) based on single-wall carbon nanotubes (SWNTs) and oxide nanobelts were fabricated and characterized. The SWNT-FETs were constructed via molecular template-directed assembly of HiPCO tubes onto pre-patterned metal electrodes on a Si/SiO$_2$ substrate. The devices exhibit operating characteristics comparable to state-of-the-art CNT FETs, and the process is amenable to large-scale functional CNT circuit assembly. Importantly, the integration of hydrophobic self-assembled organic monolayers in the device structure eliminates the primary source of gating hysteresis in SWNT-FETs, which leads to hysteresis-free FET operation while exposing unmodified nanotube surfaces to ambient air1. Individual oxide (SnO$_2$ and ZnO) nanobelt FETs with multi-terminal contacts were fabricated via conventional lithography. Simultaneous two-terminal and four-terminal measurements enabled direct correlation of the FET characteristics with the nature of the contacts. Low-resistance ohmic contacts on the nanobelts result in high-performance n-channel depletion mode FETs with well-defined linear and saturation regimes, and “on/off” ratio as high as 10^7 at ambient conditions2. Intrinsic values of the carrier concentration and effective mobility for the nanobelts were consequently obtained. Channel-limited SnO$_2$ nanobelt devices show significant modification of the FET characteristics when exposed to gas flows containing 0.2-2% H$_2$ at room temperature. The gas sensitivity and response were carefully evaluated3. The effort to utilize the channel-limited nanobelt FETs for protein detection will be discussed.

1S.A. McGill et al., APL 89, 163123 (2006).
2Y. Cheng et al., APL 89, 093114 (2006).
3L.L. Fields et al., APL 88, 263102 (2006).