Influence of Correlated Hybridization on the Conductance of Molecular Transistors

JONG-CHIN LIN, University of California, Davis, FRITHJOF ANDERS, Universitat Bremen, DANIEL COX, University of California, Davis — We study the spin-1/2 single-channel Anderson impurity model with correlated (occupancy dependent) hybridization for molecular transistors using the numerical renormalization-group method. Correlated hybridization can induce nonuniversal deviations in the normalized zero-bias conductance and, for some parameters, modestly enhance the spin polarization of currents in applied magnetic field. Correlated hybridization can also explain a gate-voltage dependence to the Kondo scale similar to what has been observed in recent experiments.

1This work was supported by the NSF International Institute for Complex Adaptive Matter (NSF Grant No. DMR-0645461), the U.S. Department of Energy office of Basic Energy Sciences, Division of Materials Research, and the NIC, Forschungszentrum Jülich.

Jong-Chin Lin
University of California at Davis

Date submitted: 17 Nov 2006

Electronic form version 1.4