Radial and angular rotons in trapped dipolar gases1 SHAI RO-
NEN, JILA and Department of Physics, University of Colorado, Boulder, CO 80309-
0440, USA, DANIELE BORTOLOTTI, JILA and Department of Physics, University
of Colorado, Boulder, CO, USA; LENS and Dipartimento di Fisica, Universitá di
Firenze, Italy , JOHN BOHN, JILA, NIST, and Department of Physics, University
of Colorado, Boulder, CO 80309-0440, USA — We study Bose-Einstein condensates
with purely dipolar interactions in oblate (pancake) traps. We find that the conden-
sate always becomes unstable to collapse when the number of particles is sufficiently
large. We analyze the instability, and find that it is the trapped-gas analogue of
the “roton- maxon” instability previously reported for a gas that is unconfined in
two dimensions. In addition, we find that under certain circumstances, the con-
densate wave function attains a biconcave shape (like a red-blood cell), with its
maximum density away from the center of the gas. These biconcave condensates
become unstable due to azimuthal excitation - an angular roton.

1USIEF (Fulbright program); DOE and the Keck Foundation.

Shai Ronen
JILA and the University of Colorado

Date submitted: 17 Nov 2006