Interaction between magnetism and superconductivity in $\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3/\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ multilayers1 T. HU, H. XIAO, C. C. ALMASAN, Department of Physics, Kent State University, Kent, OH 44242, USA, C. VISANI, Z. SEFRIOU, J. SANTAMARIA, GFMC, Departamento Física Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain — Angular dependent resistivity measurements were performed on $\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3/\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ (LCMO/YBCO) heterostructures below and above the superconducting transition temperature $T_c \approx 90$ K in different applied magnetic field. Besides the conventional intrinsic anisotropic magnetoresistance (AMR) present above T_c, we observe another anisotropic magnetoresistance, which only arises below T_c and increases significantly with decreasing temperature. Also, the proximity-induced resistance, which appears in the LCMO layer, displays a spectacular increase at T_c and then decreases significantly with decreasing temperature, persisting down to the lowest measured T of 72 K. This anomalous AMR and the proximity-induced resistance in the LCMO layer could be due to the triplet component of the superconducting condensation which penetrates into the ferromagnet over a long distance.

1This research was supported by the National Science Foundation under Grant No. DMR-0406471 at KSU and MCYT MAT 2005-06024 at U. Complutense de Madrid.