Abstract Submitted for the MAR07 Meeting of The American Physical Society

Combining the advantages of superconducting MgB2 and CaC6 in one material: suggestions from first-principles calculations AMY LIU, Georgetown University, IGOR MAZIN, Naval Research Laboratory — We show that a recently predicted layered phase of lithium monoboride, Li₂B₂, combines the key mechanism for strong electron-phonon coupling in MgB₂ (i.e., interaction of covalent B σ bands with B bond-stretching modes) with the dominant coupling mechanism in CaC₆ (i.e., interaction of free-electron-like interlayer states with soft intercalant modes). Yet, surprisingly, the electron-phonon coupling in Li₂B₂ is calculated to be weaker than in either MgB₂ or CaC₆. This is due to the accidental absence of B π states at the Fermi level in Li₂B₂. In MgB₂, the π electrons play an indirect but important role in strengthening the coupling of σ electrons. We discuss the use of doping to restore π electrons at the Fermi level, which would enhance the coupling and the superconducting T_c .

Amy Liu Georgetown University

Date submitted: 17 Nov 2006 Electronic form version 1.4