Frustration in the Hubbard model: a quantum cluster study

Andriy Nevidomskyy, University of Sherbrooke, Quebec, Canada, Christian Scheiber, Technical University of Graz, Austria, David Senechal, University of Sherbrooke, Quebec, Canada — The role of frustration in the Hubbard model is studied on the square lattice with nearest and next-nearest neighbour hoppings t and t' using the Variational cluster perturbation theory (VCPT, see [1]). We find two phases with long-range magnetic order: the usual antiferromagnet (AF1) phase, stable at small t'/t, and the so-called superantiferromagnetic phase (AF2) for large frustration. These are separated by a phase with no magnetic order. We also find d-wave superconductivity ($d_{x^2-y^2}$) for small values of $U \leq 4t$ and sufficiently weak frustration. The Mott-Hubbard transition is discussed in this context. We also compare the classical phase diagram obtained from the large-U expansion with that of the frustrated J_1-J_2 Heisenberg model.