Pattern formation in heterogeneous self-oscillating polymer gels.
VICTOR YASHIN, ANNA BALAZS, Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261. — The chemical reaction and deformations are inherently coupled in the chemo-responsive polymer gels that participate in the Belousov-Zhabotinsky reaction (BZ gels). Chemical oscillations due to the BZ reaction cause variations in the gel’s size and shape because of the hydrating effect of the oxidized metal-ion catalyst linked to the polymer. Physical and chemical patterning of self-oscillating gels would facilitate creating active materials that exhibit desirable spatiotemporal behavior. The heterogeneous self-oscillating gels might be designed to respond to external stimuli by switching between pre-programmed dynamic patterns. We explore these potentialities through modeling 2D dynamics of the structurally heterogeneous BZ gels. We start by considering the effects of a spatially non-uniform crosslink density, volume fraction of polymer, and catalyst distribution on the domain of the oscillatory regime. Then, the propagation of the swelling-deswelling waves through the structurally patterned gels is simulated using the gel lattice-spring model approach. We demonstrate and discuss how the spatial organization of the heterogeneous gel affects the origination and propagation of waves.

Victor Yashin
Department of Chemical Engineering,
University of Pittsburgh, Pittsburgh, PA 15261.

Date submitted: 22 Nov 2006
Electronic form version 1.4