Abstract Submitted for the MAR07 Meeting of The American Physical Society

Direct evidence of spin-phonon coupling in multiferroic $DyMn_2O_5$ via magneto-infrared measurements¹ J. CAO, J. L. MUSFELDT, University of Tennessee, Y. J. WANG, National High Magnetic Field Laboratory, S. PARK, S.-W. CHEONG, Rutgers University — The infrared active phonons in multiferroic $DyMn_2O_5$ are investigated as a function of magnetic field and temperature. Both field-induced frequency shifts and oscillator strength redistributions are observed in three important modes (the f-manifold crystal field splitting of Dy^{3+} near \sim 150 cm⁻¹, the Mn-O bending mode at \sim 270 cm⁻¹, and the Mn-O stretching mode near \sim 630 cm⁻¹), indicating strong spin-phonon coupling in this material. The crystal field levels of Dy^{3+} are weakly sensitive to temperature induced magnetic phase transitions, whereas the Mn-O bending and stretching modes are insensitive to these phase boundaries. These measurements provide direct proof of spin-lattice interactions in $DyMn_2O_5$.

¹This work is supported by the U.S. Department of Energy

Jinbo Cao University of Tennessee

Date submitted: 17 Nov 2006 Electronic form version 1.4