Field dependent ordering temperature in copper pyrazine perchlorate, Cu(pz)$_2$(ClO$_4$)$_2$ CHRISTOPHER LANDEE, FAN XIAO, MARK TURNBULL, Clark University, N. TSYRULIN, MICHEL KENZELMANN, ETH, Zurich, Switzerland, HANS VAN TOL, National High Magnetic Field Laboratory, Florida — Copper pyrazine perchlorate is a molecular-based 2D S=1/2 Heisenberg antiferromagnet (QHAF) with a moderate exchange constant (J/k = 17.5 K) and a saturation field of 60 T. The zero-field ordering temperature, as recently determined by muon spin relaxation experiments [1], is 4.3 K corresponding to excellent isolation (J'/J ≈ 8x10$^{-4}$) between magnetic layers [2]. Recent studies of Cu(pz)$_2$(ClO$_4$)$_2$ in applied fields (specific heat and ESR) show the ordering transition to increase with field by as much as 30% in a field of nine tesla. This effect will be discussed in terms of a field-induced anisotropy crossover model [3]. 1. T. Lancaster, S. J. Blundell et al, submitted for publication. 2. P. Sengupta, A. W. Sandvik, and R. R. P. Singh, Phys. Rev. B 68, 094423 (2003). 3. A. Cuccoli et al, Phys. Rev. B 68, 060402 (2003).